
Bugfox: A Trace-Based Analyzer for Localizing the
Cause of Software Regression in JavaScript
Yuefeng Hu

The University of Tokyo
Bunkyo, Japan

huyuefeng99@csg.ci.i.u-tokyo.ac.jp

Hiromu Ishibe
The University of Tokyo

Bunkyo, Japan
ishibe@csg.ci.i.u-tokyo.ac.jp

Feng Dai
The University of Tokyo

Bunkyo, Japan
daifeng@csg.ci.i.u-tokyo.ac.jp

Tetsuro Yamazaki
The University of Tokyo

Bunkyo, Japan
yamazaki@csg.ci.i.u-tokyo.ac.jp

Shigeru Chiba
The University of Tokyo

Bunkyo, Japan
chiba@acm.org

Abstract
Software regression has been a persistent issue in software
development. Although numerous techniques have been pro-
posed to prevent regression from being introduced before
release, few are available to address regression as it occurs
post-release. Therefore, identifying the root cause of regres-
sion has always been a time-consuming and labor-intensive
task. We aim to deliver automated solutions for solving re-
gressions based on tracing. We present Bugfox, a trace-based
analyzer that reports functions as the possible cause of re-
gression in JavaScript. The idea is to generate runtime trace
with instrumented programs, then extract the differences
between clean and regression traces, and apply two heuristic
strategies based on invocation order and frequency to iden-
tify the suspicious functions among differences. We evaluate
our approach on 12 real-world regressions taken from the
benchmark BugsJS. First strategy solves 6 regressions, and
second strategy solves other 4 regressions, resulting in an
overall accuracy of 83% on test cases. Notably, Bugfox solves
each regression in under 1 minute with minimal memory
overhead (<200 Megabytes). Our findings suggest Bugfox
could help developers solve regression in real development.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; Software maintenance tools.

Keywords: Regression, Debugging, Runtime Tracing, Code
Transformation
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1 Introduction
Software regression, where previously functional software
exhibits new faults after updates, remains a persistent chal-
lenge in software development. While many techniques fo-
cus on preventing regressions before release [5], fewer tools
effectively address regressions post-release [18]. Identifying
the root cause of these regressions can be a tedious and time-
consuming task for developers, often requiring extensive
manual debugging. This issue is particularly pronounced
in complex codebases with extensive commit histories and
numerous interconnected components.

In this paper, we introduce a trace-based analyzer designed
to automate the localization of the root causes of software
regressions in JavaScript. Our approach is grounded on the
premise that discrepancies in execution traces between a
properly functioning base program and a faulty, updated
program can reveal the root cause of regressions. Based on
this idea, we develop Bugfox, which traces both base and
faulty programs by instrumenting their source code, extracts
the differences of two traces, and reports suspicious func-
tions among the differences based on two heuristic strategies.
The first strategy focuses on the invocation relationships of
function calls, aiming to identify the starting point of de-
viated behavior of the buggy program and return that one
function call as the root cause of regression. The second
strategy examines the frequency of function calls inside the
differences of two traces, and returns top four functions with
most occurrences as candidates. Bugfox collects those can-
didates and reports five candidates in total as possible root
causes of regression.
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We evaluate Bugfox on 12 real-world regressions from
the BugsJS [6] benchmark, demonstrating its effectiveness
and efficiency. The first strategy successfully resolves 6 re-
gressions, and the second strategy resolves an additional 4
regressions, achieving an overall accuracy of 83% across test
cases. Notably, Bugfox was able to solve each regression in
under one minute with minimal memory overhead, making
it a practical tool for real-world development environments.

Our research contribution involves an detailed exploration
of identifying the root cause of regression through tracing
in real-world scenarios. This includes an implementation of
this methodology in JavaScript, along with the construction
of 12 regression cases derived from an open-source dataset.
Our research artifacts, including source code and constructed
dataset, are available at Zenodo [8]. These artifacts allow for
the reproducibility of our experimental results.

2 Localize the Cause of Regression
Regression has long been a persistent problem in software
development process. Although detecting the regression is
well studied in previous works [21, 22], localizing the cause
of regression is still under exploration. In Figure 1, we show
an example of a regression from a real-world project. The
regression is from Hessian.js [3], which is the JavaScript
implementation of Hessian binary web service protocol [10].
In Hessian.js, there are many utility functions implement-
ing the encoding of raw data and decoding of binary data
based on Hessian protocol. This example involves the release
version 2.1.9 (2b53d13) (referred as the base version) and its
subsequent commit (a46fbc9) (referred as the upgraded ver-
sion). The green code with a minus - symbol is from the
base version, and the red code with a plus + symbol is from
the upgraded version.

The example implicitly introduces a regression in the up-
graded version by incorrectly decoding the binary when raw
data is null object. As shown in Figure 1, the condition of the
if statement at line 11 is a regular expression that matches
everything except strings with the word this followed by a
dollar sign $ and then one or more digits at the end of the
string, such as this$123 or this$4567. Therefore, the pro-
gram would enter the if branch when key is a null object,
and it would be encoded to an object with property null and
value ’null’, which is the correct implementation based
on Hessian protocol when dealing with null. The upgraded
version mistakenly adds a precondition to the if statement,
leading to the program only entering the if branch when
key is a string or number, and the null object would not be
encoded in that scenario. Besides, the initial if statement at
line 3 relates to the new feature introduced to the upgraded
version, which involves supporting java.util.HashMap to
ES6 map. It assigns a $map property to object result.$ in
this code snippet. To side with these modifications in Fig-
ure 1, the upgraded version also changes its corresponding

unit testing function of decoding null object as illustrated
in Figure 2, to pass all testing modules. Since the upgraded
commit (a46fbc9) also involves new features and dozens of
file changes, the developer merges this commit to the main
tree without carefully reviewing this small change. This com-
mit is blamed by other developers as a regression later and
gets rolled back in a later fix (37d19e7).
In most cases, addressing regressions still relies heavily

on manual debugging by developers rather than relying on
automated tools. This regression example may be perceived
as straightforward to resolve, but imagine the regression is
discovered after a long period of time along with numerous
commits covering on the “regression” one, localizing the
root cause of regression would become greatly difficult. In
addition, in this example proto.readObject is just a middle-
ware utility function used for implementing the decoding
in hessian.js, while hessian.decode relates to hundreds of
functions which all could possibly be regarded as the root
cause of regression when developers inspect the limited out-
put of failures reported by testing framework such as Mocha
[4]. Given the complexity of pinpointing regression among
extensive commits and intricate codebases, automated tools
become indispensable and time-saving for efficiently resolv-
ing such tasks.

Among all testing techniques in modern test-driven devel-
opment, unit testing as the most commonly used technique,
still has limitations on addressing regressions and is not sat-
isfying. Unit testing is also known as module testing, where
individual units or components of a software application
are tested in isolation to ensure they function correctly as
standalone units. However, with the tremendous expansion
of modern software scale, it is considered burdensome and

1 proto.readObject = function (withType) {
2 ...
3 + if (isMap) {
4 + Object.defineProperty(result.$, ’$map’, {
5 + value: new Map(),
6 + enumerable: false,
7 + });
8 + }
9 this._addRef(result);
10 ...
11 - if (!/ˆthis\$\d+$/.test(key) {
12 + t = typeof key;
13 + if ((t === ’string’ || t === ’number’) &&
14 + !/ˆthis\$\d+$/.test(key) {
15 result.$[key] = value;
16 }
17 ...
18 }

Figure 1. Base (green) and upgraded (red) “buggy” version
of function proto.readObject in decoder.js.

225



Bugfox: A Trace-Based Analyzer for Localizing the Cause of Software Regression in JavaScript SLE ’24, October 20–21, 2024, Pasadena, CA, USA

1 describe('map.test.js', function () {
2 it('should decode successful when key

is null', function () {
3 var data = new Buffer ([77, 116, 0,

0, 78, 83, 0, 4, 110, 117, 108,
108, 122]);

4 var rv = hessian.decode(data);
5 - rv.should.eql(null: ’null’);
6 + rv.should.eql();
7 });
8 }

Figure 2. Base and upgraded “buggy” version of testing
function related to foregoing proto.readObject function.

unpractical to design testing modules and test cases for ev-
ery single unit and boundary condition; accordingly, testing
modules always includes unit that directly or indirectly in-
vokes other units, and regression often causes the infection
of failures in this situation where one failed unit may affect
the behavior of other units. As similar circumstance arises in
integration testing, this chain reaction might result in vast
failed test cases and bring greater difficulty to developers to
locate the root cause of regression.

3 Bugfox
In this paper, we present Bugfox [8], which is a trace-based
analyzer for localizing the cause of software regression in
JavaScript. Our approach is based on the speculation that
the root cause of regression could be detected inside the
differences between execution traces of base program and
buggy program, where the former represents the program
that functions properly with a given unit test and the latter
represents the updated program but fails on the same unit
test. On the basis of this idea, we develop Bugfox, which
traces both base and buggy programs by instrumenting their

Figure 3. Framework of Bugfox

source code, extracts their differences, and reports suspi-
cious functions among the differences based on two heuristic
strategies. Bugfox serves as a local assistant for developers
encountering regressions after modifying the source code
but before pushing their changes to the repository. It aids in
resolving regressions locally, acting as a pre-commit and pre-
push diagnostic tool. In addition, Git, as the state-of-the-art
version control system, is responsible for maintaining and
switching the version of source code in our approach. We
assume that a buggy program is also committed, probably,
to a debugging branch. So we below call base and buggy
programs base commit and buggy commit, respectively.
We give an overview of the workflow of Bugfox in Fig-

ure 3. The workflow could be divided into three independent
process: tracing, comparing and analyzing. Section 3.1 to 3.3
describes their specification.

3.1 Runtime Tracing in JavaScript
As illustrated in Figure 3, the inputs of this workflow include
two versions of source code, namely the base commit and the
buggy commit. The base commit functions correctly, while
the buggy commit introduces a regression in certain module.
Usually, the buggy commit resides chronologically after the
base commit on the Git tree. Bugfox traces the execution
of these programs and generates call trace [2] separately,
namely a tree that represents the calling relationships be-
tween various functions within a program. Each node in the
call trace represents a single function call, and the edges
between nodes indicate the flow of invocation relationships
between functions. An edge connects a node 𝑓 to a node 𝑔
when a function 𝑓 is invoked, and a function 𝑔 is invoked
within the body of that function 𝑓 .

A call-trace node has several attributes. One is an iden-
tifier to identify a called function. It is a concatenation of
the path name of a source file, the names of functions sur-
rounding the definition of the called function. For example,
let function onfinish be defined in function sendfile in
file lib/response.js. The identifier is this character string:

lib/response.js#Func@sendfile/Func@onfinish

Here, # and / are separators. Func@ represents the kind of the
function. BugFox supports seven kinds of functions: Func
(normal function), FuncVar (function variable), FuncExpr
(function expression), method (method in a class), PropFunc
(property function), ArrowMethod (special arrow function as
a method in a class), and AnonFunc (anonymous function).
When a function does not have a name, the hash value of its
body is used as its name.

Besides an identifier, a call-trace node has other attributes.
It contains the hash value of the body of a called function,
function arguments (the values of function parameters), the
this object, and a return value. The value of this and the
values of function parameters are obtained and recorded as
node attributes twice, before and after the execution of the
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Figure 4. Code transformation of a function definition (italic
text represents pseudo-code for a tracing statement).

function body. These values are represented by character
strings produced by the built-in function JSON.stringify
with our extension to support function objects, circular ob-
jects, objects with accessors, and other objects that are not
well-supported by the original stringify. When computing
the hash value of a function body, the function definition is
first transformed into a canonicalized form to absorb differ-
ences due to formatting.

Bugfox generates call traces for a base commit and a buggy
commit taken from a git repository. For this aim, Bugfox con-
ducts code transformation, which instruments the original
source code in JavaScript to insert tracing statements that
record runtime values as execution trace during program
execution. Figure 4 illustrates an example of code transforma-
tion. After code transformation, the instrumented program
is run to record execution trace in memory. The recorded
execution trace is finally written in a file before the program
execution finishes.

3.2 Differences Extraction between Call Traces
After obtaining the call traces from tracing, we need to ex-
tract the differences between the base and the buggy traces.
A difference is hereby defined as a pair of matching function
node coming from two call traces, but differing in the value
of arguments, this object and return value. In order to accu-
rately match up the homologous function node from two call
traces, we set up four prerequisites to guarantee two nodes
represents same function call in their programs: 1) Same
path (from root node) in the call traces, 2) Both are n-th child
node of same parent node, 3) Node with same function name,
4) All their previous sibling nodes are matched under same
rules. Rule 1 and 2 guarantee two function calls have same
invocation relationship in their program. Rule 3 ensures they
stands for same function, so that we can analyze their differ-
ences legally. Last rule express that once two nodes are not
matched, we stop the traversal of its remain sibling nodes
since the unmatch indicates the invocation path inside its
parent function execution has been altered, therefore we
cannot guarantee the remaining sibling nodes represents the

same function call even if satisfy the first three prerequisites.
Through this matching approach, we are capable of iden-
tifying the first deepest differing nodes, considered as the
starting point of deviated behavior in the buggy program.
After matching function nodes from two call traces in

depth first order (DFS), we compare their value of arguments,
this object and return value before and after its execution. If
any of them is different, we mark this pair of function node
as a difference between two traces. In case these values are
different before its execution, it indicates this deviation of its
behavior might be caused by its caller (passing different argu-
ments or changing the context of one function call) instead
of itself. Similarly, if these values are different only after its
execution, it signifies the function itself is responsible for the
different behavior due to its code modification or inner func-
tion calls. Furthermore, we compare the hash value of their
function definitions to judge whether the function is being
modified in the buggy commit. These results of comparison,
including whether function specifications are being changed
before its execution, and whether being changed after its
execution, and whether function definition is modified in
buggy commit, are collected for later analysis.

3.3 Localization of the Root Causes
Finally, Bugfox localizes the root causes of regression by
analyzing the differences extracted in the previous step. It
adopts two heuristic strategies to prioritize the most likely
candidates among the pairs of call-trace nodes marked as
different. One strategy focuses on the invocation order of
function calls and selects one candidate. The other strategy
focuses on the frequency of function calls inside the differ-
ences, and it selects up to four candidates if feasible. Notably,
these strategies may overlap, potentially resulting in a max-
imum total of five candidates presented as potential root
causes of regression.

First deepest function (FDF). The first heuristic strat-
egy identifies the first deepest function (FDF) among the dif-
ferences, aiming to identify the starting point of deviated
behavior of the buggy program. Deepest functions are the
node pairs that are marked as different but do not have de-
scendants marked as different in their subtrees. The function
calls represented by those pairs show deviated behavior, but
the nested calls to other functions from those calls do not
show deviated behavior. We consider those deepest function
calls as possible root causes of regression. Among all those
deepest function calls, the chronologically first one could be
regarded as the starting point of deviation of the buggy pro-
gram, and thus it could be also considered as the beginning
of the regression.

Therefore, Bugfox selects the first deepest function (FDF)
call as a candidate of the cause of regression. Before reporting
it as a candidate, however, Bugfox checks how the selected
pair of nodes is different from each other. As listed in Table 1,
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Table 1. The decision table for the first deepest function strategy.

Case Is code
changed

Is input
state changed

Is output
state changed Speculation Final reported

function

1 no no yes Deviated behavior inside its execution itself

2 yes no yes Regard code modification as the cause of
deviated behavior inside its execution itself

3 no yes no Rare condition where input state
varies while output state remains the same caller

4 yes yes no Rare condition where input state
varies while output state remains the same caller

5 no yes yes Possibly caused by the different arguments
or this object before execution caller

6 yes yes yes Most complicated situation, need further
inspection on the detail of difference itself

Bugfox compares the attributes of the nodes of that pair. It
compares the hash value of function bodies to check whether
the source code changes between the base and buggy pro-
grams. It also compares the arguments (the values of the
function parameters) and this object before and after the
function execution. In Table 1, the input states are those
values before function execution while the output states are
those values after function execution. If the results of the
comparison match case 3, 4, or 5, then Bugfox reports that
a candidate is the parent of the first deepest function call,
which is the function that invokes the first deepest function
call. For example, when a function 𝑓 calls another function
𝑔 and the call to 𝑔 is the first deepest, the function 𝑓 is a
candidate of the cause of regression. If the results of the
comparison match the other cases 1, 2, or 6, then Bugfox
reports that a candidate is the function invoked by the first
deepest function call. For the example above, the function 𝑔
is a candidate.

Top-n. The other heuristic strategy counts the occurrences
of each function in the differences, then ranks them, and
reports the top-𝑛 functions as candidates of the cause of
regression. If multiple functions share the same count, the
function with the earliest invocation is being selected. Each
pair of nodes marked as different has an identifier as an
attribute. This identifier represents the name of a called func-
tion. Bugfox checks this attribute to count the calls to each
function. We assume that a function called in more node
pairs marked as different is the cause of regression with a
greater likelihood.
Bugfox generally uses 4 as 𝑛 for the Top-𝑛 strategy. It

reports the top-4 functions as candidates of the cause of
regression. We choose 4 to balance the accuracy and effi-
ciency of this strategy. It is more likely that the selected

candidates include the true cause of regression when 𝑛 is
larger. However, the users of Bugfox must spend more time
to investigate which candidate is a true cause. Notably, when
𝑛 is selected, the outcomes for 𝑛 ranging from 1 to 𝑛 − 1 are
also inherently included due to the ranking by counts. For
instance, in Table 6, if 𝑛 equals 1 is selected, only the top
candidate will be reported, and so forth.

Case study. We now revisit the Hessian.js example dis-
cussed in section 2, using it as a case study to illustrate how
these two heuristic strategies work in practice. In this ex-
ample, the modification to function proto.readObject in
lib/v1/decoder.js is responsible for the regression. Af-
ter comparing two call traces, Bugfox identifies 12 pairs of
matching function nodes with differing behavior, referred
as differences in this paper, while the ground truth is also
included in the differences. Detailed experimental result of
this example is presented as Hessian Bug-2 in Table 6.
In FDF strategy, function node proto._addRef is recog-

nized as the first deepest function, referred to line 9 in Fig-
ure 1. It is a utility function defined as:
function (obj) { this.refMap[this.refId++] = obj; }

The arguments before execution in 1) base version and 2)
buggy version are:
1) {"$class":"java.util.HashMap","$":{}}
2) {"$class":"java.util.HashMap","$":{"$map":{}}}

These arguments remain unchanged after the execution. The
difference about $map property directly points to the code
at line 3 in Figure 1, indicates the starting point of deviation
relates to the modification on proto.readObject. The re-
sult also indicates that the source codes of proto._addRef
are identical between two versions, while the arguments
before and after its function execution vary between two
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versions. Therefore, this example corresponds to case 5 in
Table 1, and Bugfox reports its callers proto.readObject
as the final candidate of this strategy, which matches the
ground truth. Furthermore, when developer checks the speci-
fication of its caller proto.readObject in the call traces, the
return value in base version {"null":"null"} and buggy
version {"$map":{}} explicitly demonstrates that the origi-
nal functionality of decoding null object is partly ignored
and affected by the modification at line 11 in Figure 1. These
findings suggest that Bugfox would be instrumental in ad-
dressing the regression in this example.
In Top-n strategy, Bugfox returns 4 candidates, includes

function proto.readwith 3 times, exports.decode, proto.
readObject and proto._addRef with 1 time. If multiple
functions share the same count, the one invoked earlier in
the program is given higher priority. As a result, the ground
truth proto.readObject is reported as the third candidate
in this strategy. Since all candidates, except exports.decode,
are defined in lib/v1/decoder.js, these findings can help
developers quickly recall the modifications to these functions
and fix the regression in this example.

3.4 Limitation
Ourmethodology highly depends on the differences extracted
from two call traces. Predictably, whether two call traces
match well and whether valuable differences are collected
directly affects the accuracy of our heuristic strategies. There
are plenty situations might lead to the above dilemma, the
most significant of which is large scale refactoring. Big scale
refactoring always concerns the addition or deletion of func-
tions and huge change of invocation order of function calls.
In that case, one call trace might contain function calls that
the other one does not have, and the matching of functions
would be difficult due to the change of invocation order.
Thereupon according to the rule of matching two call traces,
function calls which related to those refactorings would not
be legally extracted into the differences. The tool can hardly
solve the regression if those refactorings are responsible for
the regression.

In addition, there are scenarios where our tool would fail
even the desired differences are collected. Depending on the
functionality of programs, there exists function calls related
to “mutable” information such as port number, IP address,
timestamp, or other randomly generated data. Differences ex-
tracted from such function calls might impede the analysis of
our heuristic strategies in several ways. As for FDF strategy,
once these differences appears chronologically earlier than
the actual answer, FDF strategy might return these unrelated
functions as the answer. In Top-n strategy, in case the fre-
quency of such differences is higher than the actual answer,
these unrelated functions will be ranked ahead the actual an-
swer in n-candidates. Since these unrelated functions might
result in false positive in our approach, we consider them as
noisy functions.

4 Experiments
In this paper, we propose two research questions as follows.
RQ1. Can Bugfox be used to localize the root causes of re-

gression?
RQ2. Can Bugfox meet the performance demands in real-

world development?
In order to answer these research questions, we evaluate
our system on 12 real-world regressions extracted from a
JavaScript bug dataset BugsJS [6]. In this section, we will
introduce our experiment settings, experiment results and
the answers to the RQs. The experiments are conducted on
a machine with an 11th Gen Intel(R) Core(TM) i7-11700 @
2.50GHz CPU and 64GB RAM, and the operating system is
Ubuntu 20.04.4 LTS.

4.1 Dataset and Experiment Settings
Currently, there is a lack of dataset especially focusing on
regression bugs. In order for better evaluation, we screen
and extract 12 regressions from a famous JavaScript bug
dataset called BugsJS [6], which is a benchmark containing
453 real and manually-validated JavaScript bugs from 10
popular JavaScript server-side projects [12].
In order to extract these regressions, we take an auto-

mated approach to identify regression bugs systematically
and efficiently, instead of manually inspecting each bug to
determine if it is a regression. In BugsJS, each bug corre-
sponds to a real Git commit and is labeled with a unique
ID, its bug description, and its fix in real world that includes
the update of the unit tests and source code. To note, the
labeled Git commit may not include the cause of the bug,
and it simply states the occurrence or detection of bug. To
determine if a bug is a regression, we traverse the Git tree
in reverse chronological order starting from the commit la-
beled as a bug, and execute the updated unit tests on every
preceding commits. If we ever get a test failure in a commit
followed by a test success in its parent commit, the bug could
be considered as a regression since the same functionality
has been correctly implemented before the code stops work-
ing. Meanwhile, we mark the commit that firstly introduces
the bug as the regression commit.
We successfully recognize 12 bugs in BugsJS that could

be considered as regressions [8]. These bugs will be used
to evaluate the accuracy and performance of Bugfox in this
paper. We collect their regression commits, and identify the
functions being updated in a later fix as the root cause of
the regressions. These functions are also considered as the
ground truth to be compared with the results from Bugfox.
In detail, 7 of these regression bugs come from Express [7],
3 of them come from ESLint [24], and 2 of them come from
Hessian.js [3]. We give an overview of the collected bugs in
Table 2. Note that the unit test of each bug case fails, and
the generated log messages show only the failed assertion
and the call trace of its test unit. Testing frameworks give
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Table 2. List of 12 regressions extracted from BugsJS.

Project Bug-ID Regression
commit Unit testing module

Express 1 f41d09a test/app.options.js

Express 8 cf41a8f test/app.use.js

Express 9 997a558 test/app.js

Express 13 31b2e2d test/app.param.js

Express 16 c6e6203 test/res.redirect.js

Express 18 fb2d918 test/app.param.js

Express 27 7f04916 test/app.param.js

ESLint 10 a21dd32 tests/lib/config.js

ESLint 134 5266793 tests/lib/rules/no-useless-escape.js

ESLint 307 0f97279 tests/lib/rules/no-multi-spaces.js

hessian.js 2 a46fbc9 test/map.test.js

hessian.js 8 29f434e test/v1.test.js

no reasonable analysis or speculation for users to further
understand and solve the regression. Finding the causes of
regression is difficult without an extra tool like Bugfox.

4.2 RQ1: Can Bugfox be Used to Localize the Root
Causes of Regression?

In each regression in Table 2, Bugfox will report 5 potential
functions in total as the possible root causes of the regression,
including one from FDF strategy and four from Top-n strat-
egy. If the reported function aligns with the ground truth,
we consider it as a success. Table 3 summarizes the results of
applying Bugfox to localize the root cause of regression on
the previously mentioned dataset. The 3rd column shows the
fixed function for each regression in real world, considered
as the ground truth in our experiment. The 4th column indi-
cates whether the function reported by FDF strategy matches
the ground truth. The 5th column shows whether the ground
truth is included in the top-4 candidates reported by Top-n
strategy with n = 4, and if included, which candidate matches
the ground truth. Checkmark symbol ✓indicates the result
of the strategy matches the expected result, while blank cell
indicates the opposite.
As shown in Table 3, FDF strategy solves 6 regressions

out of 12, and Top-n strategy solves 8 regressions out of 12.
Among them, 4 regressions are shared by both strategies. In
FDF strategy, all 7 regressions from Express meet the case 5
in Table 1, which return the caller of first deepest function as
the root cause. Hessian.js Bug-2 meets the case 5 and returns
the caller, and remaining 4 regressions meet the case 2 and
return the first deepest function itself. By the integration
of two strategies, Bugfox covers a total of 10 regressions,
resulting in an overall accuracy of 83.3%.

We further verify the limitations of Bugfox in real scenario
by investigating the failures of our experiments. It can be
seen that the results of FDF strategy on Express project are

not ideal. After inspecting the details of these cases, we find
that Express, as a de facto standard server framework for
Node.js, contains a massive amount of utility or middle-ware
functions that include unrelated information such as port
numbers, timestamps, IP addresses, or other randomly gen-
erated data. Such noise is liable to cause different behavior
between two versions, leading to undesired differences of
traces being collected and analyzed before the real suspi-
cious difference. This situation happens in many regressions
from Express project, resulting in the false reports of FDF
strategy on Bug-9, 13, 16, 18, 27 from Express project. It also
results in the failure of Top-n strategy on Bug-16 from Ex-
press project. However, Top-n strategy showsmore tolerance
since it provides more than one candidate.
Particularly, the complete failure of Bug-1 from Express

project relates to the large-scale refactoring: the function
that introduces the regression is added to the buggy commit
for the first time. Hence, the base trace does not contain
that function, resulting in the inability to extract meaningful
differences and resolve the regression effectively.

4.3 RQ2: Can Bugfox Meet the Performance
Demands in Real-World Development?

To evaluate the performance of our system, we record the
running time of different stages in Bugfox, the lines of code
(LOC) of each test project, and the size of tracing log of entire
program. The size of tracing log is used as the approximation
of memory overhead.

In terms of code transformation, Table 4 demonstrates the
lines of code (LoC) of each regression and their correspond-
ing transformation time. It can be seen that the regressions
from ESLint project spend more time that other regressions.
This is because that ESLint, as a static code analysis tool for
identifying problematic patterns found in JavaScript code,
contains a huge numbers of unit tests, resulting in thousands
of functions being transformed in runtime. However, since
code transformation is a one-time task in our workflow and
all such transformations spend only a few seconds, we argue
that the time of code transformation is acceptable in real
usage of this system.
Table 5 demonstrates the overall performance of Bugfox

on memory and runtime, aiming to evaluate the overhead
of applying tracing in our system. The 3rd column and 4th
column show the runtime of the original program and in-
strumented program. The comparison of these two columns
illustrates the runtime overhead of tracing. It can be seen that
the overhead varies widely in our experiment. For example,
in Bug-2 of hessian.js, the runtime of the instrumented pro-
gram is only 1.3 times larger than the original program, while
in Bug-8 of Express, the ratio increases to 2400 times. After
inspecting the detail of traces, we speculate that this dis-
crepancy is caused by different amount of data being traced
and time spent on their object serialization. However, the
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Table 3. Experimental results of Bugfox on 12 regression test cases.

Project Bug-ID Expected result FDF strategy Top-n strategy
with n=4

Express

1 lib/router/index.js#FuncExpr@proto.handle
8 lib/application.js#FuncExpr@app.use ✓ 2nd candidate
9 lib/application.js#FuncExpr@app.use 3rd candidate
13 lib/router/index.js#FuncExpr@proto.process_params 4th candidate
16 lib/response.js#FuncExpr@res.redirect
18 lib/router/index.js#FuncExpr@proto.process_params 1st candidate
27 lib/router/index.js#FuncExpr@proto.process_params 4th candidate

ESLint
10 lib/config.js#Class@Config/Method@constructor ✓ 1st candidate
134 lib/rules/no-useless-escape.js#PropFunc@create ✓
307 lib/rules/no-multi-spaces.js#PropFunc@create/PropFunc@Program ✓

hessian.js 2 lib/v1/decoder.js#FuncExpr@proto.readObject ✓ 3rd candidate
8 lib/utils.js#FuncExpr@exports.handleLong ✓ 3rd candidate

maximum runtime of instrumented program in our experi-
ment takes less than 26 seconds, which could be considered
acceptable in real-world development process. The 5th col-
umn shows the time spent on analyzing differences between
traces, and in all cases, the maximum analysis time is less
than 10 seconds. The last column demonstrates the size of
traces stored in the disk, as an indicator to evaluate the mem-
ory overhead of tracing, it varies from 7MB to 132MB. In our
experiment, our system spends less than 1 minute for solving
a regression with memory overhead less than 200MB for all
cases. Compared with manual debugging, Bugfox observably
saves time for our users and meet our expected performance
demands.

Table 4. Lines of code and code transformation runtime.

Project Bug-ID Lines of code Code transformation
runtime

Express 1 7211 1.145 s

Express 8 10189 1.426 s

Express 9 9631 1.393 s

Express 13 7630 1.153 s

Express 16 9653 1.403 s

Express 18 8309 1.231 s

Express 27 8306 1.206 s

ESLint 10 222470 7.331 s

ESLint 134 169489 6.422 s

ESLint 307 225086 7.335 s

hessian.js 2 4805 1.016 s

hessian.js 8 4339 950.017 ms

Table 5. Overall performance of Bugfox on memory and
runtime.

Project Bug-ID Original
runtime

Runtime of
instrumented program

Analysis time
of differences

Size of
trace

Express 1 12 ms 3 s 527.086 ms 28 MB

Express 8 12 ms 18 s 277.583 ms 125 MB

Express 9 2 ms 3 s 1.807 s 41 MB

Express 13 12 ms 18 s 4.591 s 93 MB

Express 16 11 ms 26 s 6.457 s 132 MB

Express 18 10 ms 15 s 1.633 s 80 MB

Express 27 13 ms 23 s 8.085 s 99 MB

ESLint 10 24 ms 35 ms 162.41 ms 24 MB

ESLint 134 15 ms 2 s 1.136 s 7 MB

ESLint 307 18 ms 236 ms 265.122 ms 8 MB

hessian.js 2 3 ms 4 ms 197.577 ms 39 MB

hessian.js 8 5 ms 33 ms 165.294 ms 41 MB

4.4 Threats to Validity
There are several threats to internal validity of our evalua-
tion. The number of regression cases used in our experiment
is very limited, which may lead to bias of experimental re-
sults. Further benchmarking with different test frameworks
is needed to comprehensively evaluate our system. Moreover,
the use of heuristic strategies in localizing the suspicious
functions also reduces the generalizability of Bugfox. In par-
ticular, the selection of value n (number of candidates) in
Top-n strategy is highly ad-hoc. Further research is required
to analyze the setting of this parameter.
As explained in the failures of Bug-1 and Bug-16 in Ex-

press, our current approach has limitations on dealing with
regressions with large scale refactoring or noisy functions, as
they are lead to great difficulty on matching two call traces
and extracting usable differences for later analysis. Further-
more, as shown in Table 5, the overhead of tracing varies a
lot across different regression cases. Although Bugfox can
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work smoothly on tested modules with small granularity,
the overhead of complete tracing would be enormous on
middle-level tested modules or integration testing.

5 Related Work
Pastor et al. [19] proposes a tool for debugging regression
problems in C/C++ software, which uses GDB debugger to
trace predicate and then reports a list of suspicious differ-
ences in the base and upgraded version. However, due to the
limitation of low-level procedural programming languages,
their approach is unable to implement universal tracing with
complete data serialization, and only a small subset of pro-
gram is applied when identifying the cause of regressions.
To validate the feasibility of utilizing universal tracing for
addressing regressions, we develop our trace-based analyzer
in JavaScript, which captures a comprehensive range of pro-
gram information.

Maksimovic et al. [15] presents a framework that utilizes
traditional machine learning techniques alongwith historical

data in version control systems and the results of functional
debugging. Their approach aims to rank revisions based on
their likelihood of being responsible for a particular failure.
This research motivates the construction of a regression bug
dataset based on the version control system in this paper.

Unit testing frameworks have been implemented for var-
ious languages and platforms, including C [23], Java [1],
JavaScript [9], Python [13], .NET [17, 20], Node.js [4, 11, 14]
and React [16]. These frameworks are widely used in modern
software development process, providing the possibility to
extend our approach to other programming languages.

Rosero [21] presents a survey of software regression test-
ing techniques applied from 2000 to 2015, considering their
application domain, the types of metrics they use, their appli-
cation strategies and the phases of the software development
process where they are applied. Our approach is inspired
by its survey on regression test selection (RTS) techniques,
where it describes the trend of testing techniques based on
graphs, dependency relationships, historical data and heuris-
tics.

Table 6. Detailed experimental results of Bugfox on 12 regression test cases.

Project Bug-ID Expected result FDF strategy Top-n strategy with n=4

Express 1 lib/router/index.js#
FuncExpr@proto.handle

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.set (4)
lib/application.js#AnonFunc@d7d4b9c/FuncExpr@app[method] (4)

lib/application.js#FuncExpr@app.enable (2)
lib/express.js#Func@createApplication (1)

Express 8 lib/application.js#
FuncExpr@app.use

lib/application.js#
FuncExpr@app.use

(Case 5)

lib/utils.js#FuncExpr@exports.flatten (2)
lib/application.js#FuncExpr@app.use (1)

lib/application.js#FuncExpr@app.use/AnonFunc@497a64c (1)
lib/router/index.js#FuncExpr@proto.use (1)

Express 9 lib/application.js#
FuncExpr@app.use

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.set (46)
lib/application.js#FuncExpr@app.enabled (6)
lib/application.js#FuncExpr@app.use (5)

lib/application.js#FuncExpr@app.lazyrouter (5)

Express 13 lib/router/index.js#
FuncExpr@proto.process_params

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.set (11)
lib/application.js#FuncExpr@app.enabled (3)

lib/application.js#AnonFunc@4c5011c/FuncExpr@app[method] (3)
lib/router/index.js#FuncExpr@proto.process_params (3)

Express 16 lib/response.js#
FuncExpr@res.redirect

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.set (12)
lib/router/index.js#FuncExpr@proto.match_layer (3)

lib/router/index.js#FuncExpr@proto.process_params (3)
lib/router/layer.js#FuncExpr@Layer.prototype.handle_request (3)

Express 18 lib/router/index.js#
FuncExpr@proto.process_params

lib/application.js#
AnonFunc@4c5011c/FuncExpr@app[method]

(Case 5)

lib/router/index.js#FuncExpr@proto.process_params (4)
lib/application.js#FuncExpr@app.set (2)

lib/application.js#FuncExpr@app.handle (1)
lib/application.js#AnonFunc@4c5011c/FuncExpr@app[method] (1)

Express 27 lib/router/index.js#
FuncExpr@proto.process_params

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.all/AnonFunc@68e1170 (33)
lib/router/route.js#AnonFunc@cea325e/FuncExpr@Route.prototype[method] (33)

lib/application.js#FuncExpr@app.set (13)
lib/router/index.js#FuncExpr@proto.process_params (4)

ESLint 10 lib/config.js#
Class@Config/Method@constructor

lib/config.js#
Class@Config/Method@constructor

(Case 2)

lib/config.js#Class@Config/Method@constructor (1)
lib/config/plugins.js#Class@Plugins/Method@constructor (1)

ESLint 134 lib/rules/no-useless-escape.js#
PropFunc@create

lib/rules/no-useless-escape.js#
PropFunc@create

(Case 2)

lib/util/comment-event-generator.js#Func@emitComments (40)
lib/util/comment-event-generator.js#Func@emitCommentsEnter (20)
lib/util/comment-event-generator.js#Func@emitCommentsExit (20)

lib/code-path-analysis/code-path-analyzer.js#Func@forwardCurrentToHead (18)

ESLint 307 lib/rules/no-multi-spaces.js#
PropFunc@create/PropFunc@Program

lib/rules/no-multi-spaces.js#
PropFunc@create/PropFunc@Program

(Case 2)

lib/testers/rule-tester.js#Class@RuleTester/Method@run/Func@testValidTemplate (1)
lib/testers/rule-tester.js#Class@RuleTester/Method@run/Func@runRuleForItem (1)

lib/linter.js#Class@Linter/Method@verify (1)
lib/util/traverser.js#Class@Traverser/Method@traverse (1)

hessian.js 2 lib/v1/decoder.js#
FuncExpr@proto.readObject

lib/v1/decoder.js#
FuncExpr@proto.readObject

(Case 5)

lib/v1/decoder.js#FuncExpr@proto.read (3)
index.js#FuncExpr@exports.decode (1)

lib/v1/decoder.js#FuncExpr@proto.readObject (1)
lib/v1/decoder.js#FuncExpr@proto._addRef (1)

hessian.js 8 lib/utils.js#
FuncExpr@exports.handleLong

lib/utils.js#
FuncExpr@exports.handleLong

(Case 2)

test/v1.test.js#AnonFunc@52d7217/AnonFunc@3df64bc/AnonFunc@fa86bb7/AnonFunc@efe399a (1)
lib/v1/decoder.js#FuncExpr@proto.readLong (1)
lib/utils.js#FuncExpr@exports.handleLong (1)

lib/v1/decoder.js#FuncExpr@proto.handleType (1)
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6 Conclusion
Addressing software regression heavily relies on manual
debugging in software development, automated tools are
needed to increase the efficiency of regression testing. We
propose Bugfox towards this goal, based on inserting instru-
mentation to trace complete program execution, and localize
the root cause of regression among differences of clean and
regression programs. We explore the performance of Bugfox
on 12 test case studies. FDF strategy solves 6 regressions
and Top-n strategy solves other 4 regressions, resulting in
an overall accuracy of 83%. Eventually, Bugfox spends less
than 1 minute with minimal memory overhead less than
200 megabytes. Our results show that Bugfox is able to help
developers solve regressions in real development. Our future
work is to investigate how to automatically identify and col-
lect the regressions in open-source projects and retest our
tool on a more comprehensive benchmark. Another future
work is reducing overheads due to obtaining execution trace
in JavaScript.
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A Experimental Details
Table 6 shows the detailed experimental results of Bugfox on
12 regression test cases. The 3rd column shows the ground
truth of the root cause of regression. The 4th column shows
the function reported from FDF strategy and indicates which
case it fits in Table 1. The 5th column shows top four candi-
dates reported from Top-n strategy with n=4 in descending
order of frequency, where the number in parentheses indi-
cates the frequency of each candidate. Reported function in
green color indicates that it matches the expected result.
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